-2y(3y^2-7y-12)=

Simple and best practice solution for -2y(3y^2-7y-12)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2y(3y^2-7y-12)= equation:


Simplifying
-2y(3y2 + -7y + -12) = 0

Reorder the terms:
-2y(-12 + -7y + 3y2) = 0
(-12 * -2y + -7y * -2y + 3y2 * -2y) = 0
(24y + 14y2 + -6y3) = 0

Solving
24y + 14y2 + -6y3 = 0

Solving for variable 'y'.

Factor out the Greatest Common Factor (GCF), '2y'.
2y(12 + 7y + -3y2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor 'y' equal to zero and attempt to solve: Simplifying y = 0 Solving y = 0 Move all terms containing y to the left, all other terms to the right. Simplifying y = 0

Subproblem 2

Set the factor '(12 + 7y + -3y2)' equal to zero and attempt to solve: Simplifying 12 + 7y + -3y2 = 0 Solving 12 + 7y + -3y2 = 0 Begin completing the square. Divide all terms by -3 the coefficient of the squared term: Divide each side by '-3'. -4 + -2.333333333y + y2 = 0 Move the constant term to the right: Add '4' to each side of the equation. -4 + -2.333333333y + 4 + y2 = 0 + 4 Reorder the terms: -4 + 4 + -2.333333333y + y2 = 0 + 4 Combine like terms: -4 + 4 = 0 0 + -2.333333333y + y2 = 0 + 4 -2.333333333y + y2 = 0 + 4 Combine like terms: 0 + 4 = 4 -2.333333333y + y2 = 4 The y term is -2.333333333y. Take half its coefficient (-1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. -2.333333333y + 1.361111112 + y2 = 4 + 1.361111112 Reorder the terms: 1.361111112 + -2.333333333y + y2 = 4 + 1.361111112 Combine like terms: 4 + 1.361111112 = 5.361111112 1.361111112 + -2.333333333y + y2 = 5.361111112 Factor a perfect square on the left side: (y + -1.166666667)(y + -1.166666667) = 5.361111112 Calculate the square root of the right side: 2.315407332 Break this problem into two subproblems by setting (y + -1.166666667) equal to 2.315407332 and -2.315407332.

Subproblem 1

y + -1.166666667 = 2.315407332 Simplifying y + -1.166666667 = 2.315407332 Reorder the terms: -1.166666667 + y = 2.315407332 Solving -1.166666667 + y = 2.315407332 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + y = 2.315407332 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + y = 2.315407332 + 1.166666667 y = 2.315407332 + 1.166666667 Combine like terms: 2.315407332 + 1.166666667 = 3.482073999 y = 3.482073999 Simplifying y = 3.482073999

Subproblem 2

y + -1.166666667 = -2.315407332 Simplifying y + -1.166666667 = -2.315407332 Reorder the terms: -1.166666667 + y = -2.315407332 Solving -1.166666667 + y = -2.315407332 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1.166666667' to each side of the equation. -1.166666667 + 1.166666667 + y = -2.315407332 + 1.166666667 Combine like terms: -1.166666667 + 1.166666667 = 0.000000000 0.000000000 + y = -2.315407332 + 1.166666667 y = -2.315407332 + 1.166666667 Combine like terms: -2.315407332 + 1.166666667 = -1.148740665 y = -1.148740665 Simplifying y = -1.148740665

Solution

The solution to the problem is based on the solutions from the subproblems. y = {3.482073999, -1.148740665}

Solution

y = {0, 3.482073999, -1.148740665}

See similar equations:

| -0.6666(5p-16)=10 | | 0=x^2-24x+144 | | log(x)=3.15 | | 28-3x=-4(6x+2)-4(-5-5x) | | 3x=3.5x-25 | | Y^2+10=7y | | -9x+7=-74 | | 71x-1+20x=180 | | 3*5-12(4)= | | 9(6x-4)=288 | | 6q-5p=3 | | 8m+4=10+2m | | 3(n-2)=-15 | | -16x^2+20x+0=0 | | 92.25m=-74 | | (2x+12)=x+30 | | 2y-y+2y=9 | | -5x+3+6x=14-26 | | (x^2-3x-4)(x^2-8x+32)= | | -9(y+2)+4(4y-4)=6(y-5)+8 | | 9=5y-2y | | 8s=5s+21 | | 12x+9=3x+9 | | 4x^2-27x=40 | | 5x-8=4x-3 | | 10x^6+140x^5+330x^4=0 | | 11c-2=8c+16 | | 2log(x)=-6 | | 4(5+w)=3(w-8) | | 40-6x=12+8x | | 2logx=-6 | | 4=o |

Equations solver categories